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1. INTRODUCTION

Most of the work in mechanical program verification is

based on the method of invariant assertions [5]. The automatic

discovery of invariant assertions from given program specifica-

tions has thus been a matter of much research, e.g. [1,2,3,6,7,

12,13,15]. The general problem of synthesizing invariant

assertions is deemed unsolvable (12], and, as Wegbreit [161

implies, even when the problem is solvable, it may require an

exponential amount of time in the worst case. Our result is

that for the restricted class of arithmetical programs, the

problem is solvable as well as quite simple. Informally, arith-

metical programs are those in which values and operations range

over non-negative integers. Most data types of practical use

can be represented by non-negative integers by proper mapping,

and hence the class of arithmetical programs is quite large.

As an alternative to the second-order predicate-calculus

formalization of flowchart programs, developed by Cooper [2]

and Manna (see [9]), we formalize arithmetical flowchart programs

in terms of G6del's classical arithmetical predicates (see [8])

-- a first-order theory containing equality, zero, successor,

addition, and multiplication. We then present a construction

for the minimal predicate [9] associated with any cut-point in

a given arithmetical program. (A minimal predicate for a cut-

point is in a sense the strongest invariant assertion at that

point.) We also show that two alternative definitions of

invariant assertions, namely by minimal predicates [9] and optimal

predicates (3] are equivalent; our explicit solution for a minimal

predicate also satisfies the definition of optimal predicate.

2. ARITHMETICAL PREDICATES AND PROGRAMS

This section defines and relates together the concepts of

arithmetical predicates and arithmetical flowchart programs.

Arithmetical predicates are defined following the treatment in

[8]. Informally, arithmetical predicates are properly formed

formulas which contain: zero, individual variables, successor,
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addition, multiplication, equality, logical connectivesquanti-

fiers over individuals. The formulas may also contain other

symbols that can be defined in the system. For example, one may

abbreviate 0' (the successor of zero), 0'', ... by 1, 2, ... ,

and3z(x+z')=y) by x<y, etc. A function f is arithmetical if the

predicate f(x)=y is arithmetical.

The notions of 1-recursive schemas and 1-recursive program
are defined about the same way as recursive schemas and recursive

programs have been defined in the literature (e.g. [91, except

that the number of function variables is restricted to one, i.e.,

the schemas and programs are restricted to a single use of
recursion. A 1-recursive program is arithmetical if it is ob-

tained by interpreting a 1-recursive schema over the domain of

non-negative integers. It is then shown that the computation

associated with an arithmetical 1-recursive program can be

stated in terms of an arithmetical predicate.

The result is then extended to flowchart programs in

general. A flowchart program is called arithmetical if it is
obtained from a flowchart schema under an arithmetical inter-

pretation. By using computation-preserving translations to
obtain a 1-recursive program from any flowchart program, it is

shown that the computation associated with a flowchart program

can be characterized by an arithmetical predicate.

2.1 Basic notation and definitions

The symbols from which our formulas are constructed are the following:

1. Punctuation marks , ( )

2. Truth symbols T F

3. Logical symbols & v 3

4. Constants:
2-adic function constants • +

1-adic function constant Succ

2-adic predicate constant =

constant 0
5. Variables:

individual variables vlv2,v3,.
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(For simplicity, we may use additional symbols such as x,y,u to

denote the formal individual variables vi.)

We define recursively three classes of expressions as follows:

Definition 1

a) p-terms:

1. 0 is a p-term.

2. Each individual variable is a p-term.

3. If t1 and t2 are p-terms, then so are (tI + t2),

(t1 * t2 ) and Succ(t1 ).

b) Atomic formulas:

1. T and F are atomic formulas.

2. If t1 and t2 are p-terms, then the expression (tI = t2)

is an atomic formula.

c) Arithmetical predicates:

1. Each atomic formula is an arithmetical predicate.

2. If R is an arithmetical predicate and x is a variable, then

_(R), 3x(R) and Vx(R)

are arithmetical predicates.

3. If R and S are arithmetical predicates, then so are

(R I S), (R & S) and (R v S)

In defining an atomic formula, term and arithmetical predicate,

we use more parentheses than is strictly necessary to indicate

the scope of operators. We can omit some of them by employing

the usual rank conventions. we list operators in the order of

increasing precedence as follows:

& y ~Y3= + * Succ
This allows us to shorten the length of the formulas. Another

kind of abbreviation is provided by introducing a new symbol with

a method for translating an expression containing the new symbol

back into one without it. For example, we abbreviate the ex-

pression
"3v3(Succ(v3)+v I) = v2"t by "v 1 v2"

and

"Succ(0)", "Succ(Succ(0))", ... by " 1 ", " 2 "



Definition 2

A predicate p is arithmetical if there exists an arithmetical

predicate logically equivalent to p. A function f of n arguments

(n>O) is arithmetical if there exists an arithmetical predicate

equivalent to f(vi,...,Vn) = Vn+l .

The notation next used has been employed by Manna [9,

pp. 319-321] to define more general schemas. The 1-recursive

schemas used here are syntactically simpler than general schemas,

yet, as will be shown later, they define the same class of functions.

The syntax for 1-recursive schemas makes use of the following

symbols:

1. punctuation marks , (

2. definition symbol

3. conditional symbols IF THEN ELSE

4. Constants:

n-adic function constants f0 i>l, n>O

n-adic predicate constants p i>l, n>O

undefined value

A 0-adic function constnat f? is called an individual constant,

and a 0-adic predicate constant pis called a propositional constant.

5. Variables

individual variables Xlx 2,..., ylY 2 ,...

output variable z

function variable G

Instead of f' or pi, we simply write f. or pi when the

number n of arguments is clear from the context. For simplicity,

we use additional symbols to denote the formal ones, e. g., f, g,

h for function constants, p, q for predicate constants, a, b for

individual constants, etc. The context will make such useage

clear. We also use the vector notation for conciseness. For

example, we write x for a vector of variables xI , ... , xn for

some fixed n.
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We define recursively three classes of expressions as follows:

Definition 3

a) s-terms:

1. Each individual variable is an s-term.

2. If tl,...,t n and tit! are s-terms, then so are

fi(t Vv. ,tn

and
IF Pi(tl.....tn) THEN t[ ELSE t;

b) conditional terms

1. L is a conditional term.

2. Each s-term is a conditional term.

3. If tlt 2 ,...,tn are s-terms and wlw 2 are conditional terms

then
IF Pi(t ,...,tn) THEN w, ELSE

is a conditional term.

c) 1-recursive schemas

A 1-recursive schema is an expression of the form

z=G(x,t(x)) where

G(x,y) * IF p(x,y) THEN w(x,y)

ELSE G(x,t'(x,y))

Here t(x),t'(x,y) are vectors of s-terms, with t(x) having the
same number of components as y, and w(x,y) is a conditional term.

The variables x and y are called input and program variables,
respectively.

Given a 1-recursive schema S, we can specify an interpretation I
of the schema in terms of:

1. A set D called the domain of the inerpretation.

2. Assignments to the constants:

To each function constants f0i a total function mapping:

Dn *D

To each predicate constant pi a total predicate mapping:

D n (F,T)

Dn
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Note that the individual constant f? or a is assigned some0 i
fixed element of D, and the propositional constant p? is assigned

the value T or F.

The pair P= 4S,I> , where S is a 1-recursive schema and I

is an interpretation of S is called a 1-recursive program. For

given values of x, a 1-recursive program P= <s,I> can be executed
by constructing the sequence of s-terms sO'sl'.. as follows:

s0=G(x,t(x)) after all possible simplifications (see below)

si+l is obtained from si by replacing in si the leftmost-inner-

most occurrence of G(x,t(x)) with

IF p(x,t(x)) THEN w(x,t(x)) ELSE G(x,t'(t(x)))

and then applying all possible simplifications.

The simplification rules are

a) Replace each occurence of f i(tl,...t n) and Pi(tl,...tn),

where ti is an element of the domain D, by its value.

b) Replace

(IF T THEN t1 ELSE t2) by t1

and

(IF F THEN t1 ELSE t2) by t2

If the computation sequence so,sl,.., is finite, and the last

term sk is not -, we say val <P,x>= Sk; otherwise val <P,x> is

undefined.

Example 1 The following is a 1-recursive schema with one input

variable x and two program variables

S: z-G(x,x,a) where
G(x,y11 Y 2) 4 IF p(yl) THEN Y2

ELSE G(x11 f(yI),g(yly 2))

Choose the interpretation I as follows: D=[0,l,2,...}, 1 for a,

yl-0 for p(yl), f(yl)-yl-1 (define f(0)=0 to make f total],

g(yly2)yl*y2 . Then we obtain the following 1-recursive program:
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P=(S,I): z=G(x,x,l) where

G(x,yl,y2 ) 4 IF yl=O THEN 1

ELSE G(xYll,yl*Y2).

For the initial value x-3, the computation sequence is as follows:
s =G(3,3,1), s =G(3,2,3), s2=G(3,1,6), s4=G(3,0,6), s5=6. Thus,

val <P,3> = 6. In general, val <P,x> = x!

2.2 Program characterization by arithmetical predicates

An arithmetical interpretation of a recursive schema S is an
interpretation such that

1. The domain D is the set of non-negative integers.

2. The functions and predicates assigned to the function and

predicate variables of S are all arithmetical.

An arithmetical 1-recursive program is a 1-recursive program
which is obtained from a 1-recursive schema under an arithmetical

interpretation. Thus, I and (S,I) used in the example above

are an arithmetical interpretation and an arithmetical 1-recursive

program, respectively. Now we can state the main result of this

section.

Theorem 1 Let P be an arithmetical 1-recursive program. Then

val <P,x> = u is an arithmetical predicate.

Before proving the theorem, we need the following:
Lemma 1 Under an arithmetical interpretation, s-terms and condi-

tional terms become arithmetical functions.

Proof First suppose t is an s-term. We prove by induction that

t is arithmetical.

Basis t is same individual variable x. Then t=u is equivalent to

x=u which is an arithmetical predicate.

Induction step t is f(t ,... tn) and all t=u are arithmetical

predicates. Then t=u is equivalent to

3 Yl...3 Yn(Yl=tl&...&Yn-tn & f(yl,...,yn)=u)

which is an arithmetical predicate. Suppose

t is IF p(t1 ) THEN t2 ELSE t3 and we assume that tI, t2, and t3

are arithmetical. Then t-u is equivalent to
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:3y: (Y=tl&(p(y)&t2'u v ~p(y) & t 3=u))

which is an arithmetical predicate. Next, suppose w is a condi-

tional term. Again we can prove by induction that w is arithmetical.

Basis If w is I then w=u is equivalent to

J_ =u
which is F (since the domain of variable is 0,1,....); therefore it

is an arithmetical predicate.

Induction step Same as for s-terms.

Proof of Theorem 1 Let the program P=(S,I) be

(1) z=G(x,t(x)) where

G(x,y) 4 IF p(x,y) THEN w(x,y)

ELSE G(x,t'(x,y))

Let n be the number of program variables in P (i.e. the number of

elements in y). Then n is a fixed number for P. With the ith

term in the computation sequence for val <P,x> , we can associate

an n-tuple ai such that the jth component of a gives the value

of the program variable yj at the ith step of execution in (P,x>.

Then for val <P,x> = u to be true, there must exist an integer k

such that
0

a = t(x)

1 0 0
a = tl'(x,a ) & -p(x,a )

2 1 1
a = t' (x,a ) & ~p(x,a )

(k-1) (k-2) (k-2)
a = t'(xa ) & -p(x,a

(k-i) (k-1)
u = w (x,a ) & p(x,a

Go5del (see [81) has introduced the arithmetical function 8(u,v,i)

with the properties:

(i) The predicate 8(u,v,i)-w is arithmetical,

(ii) For any finite sequence of natural numbers n0 ,nl,..., nk'

one can find two integers c,d such that 8(c,d,i)=n. for i=0,1,...,k.
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Note that a suitable definition of is

8(u,v,i) = u mod (i+l)*v+l

To use $ to encode arbitrarily long, finite sequences of n-tuples,

we need 2n constants clc 2 ,...,cn,dld 2 ,...,dn. Let us denote

the vectors <cl,...,cn> , <dl ,.. . ,d n> , and
<(Cl,dl,i),..., 8(cn ,d ni)> by c,d,S(c,d,i), respectively, and

denote

3C 1  -. Cn , 3d ... 3dn  by 3c,3d

Then we may write (2) as

(3) jk-3cad [8(c,d,0) =t (x)

& Vi[(0<i<k) Z)8(c,d,i) = t'(x,a(c,d,i-l))

&-Ip(x,a8(c,d,i-1))1]]

& u = w(x,a(c,d,k)) & p(x,a(c,d,k))]

Being equivalent to (3), val <P,x> = u is an arithmetical predicate.

We remark that it is only for simplicity that 1-recursive

schemas have been defined to have a single output variable. Their

definition, as well as Theorem I, can be extended to the case of

any finite number of output variables.

Example 2 As seen previously, the following is an arithmetic

1-recursive program.

P: z=G(x,x,l) where

G(xyly 2 ) 4 IF yl=0 THEN Y2

ELSE G(x,yl-lyl*y2 )

Here G is arithmetical, and the predicate val(P,x)=u is equivalent

to
3k73Cl C2 , d2 [ 8(Cl~dl,0) =x & 8 (c2d2 0 i

& Vi[O i<k =[8(cl,dl1 i)= 8(cl,dl,i-l)-l

& 8(c2 ,d2 ,i)= a(cl,dl,i-l)*(c 2 ,d 2 ,i-l)

& - 0(cl,d 1 1 i-l)=O]]

& u = 8(c 2 ,d 2 ,k) & 8(cl,dl,k) = 01



2.3 Arithmetical predicates for flowchart programs

The formalization in terms of arithmetical predicates

obtained above for 1-recursive programs will now be extended to

flowchart programs in general. The reader is referred to [9]

for the definition of flowchart schemas, flowchart programs, and

the computation sequences associated with flowchart programs.

We define an arithmetical flowchart program to be a flowchart

program obtained from a flowchart schema under an arithmetical

interpretation.

Lemma 2 Every flowchart program can be translated into an

equivalent flowchart program with at most one loop.

This is a well known part of computer science folklore but its

proof is not commonly available in print. Similar results in-

clude: the need of only one mu-operator in recursive function

theory (see (see [8], or of only one backward GOTO in PL[IL].

Proof We give a transformation in three steps as follows:

1) Enumerate all statements, viz. associate and integer i

(i=l,2,...k) with every assignment statement and every

test. To each HALT statement assign a distinct integer,

ihalt' such that ihalt>k, and to each LOOP statement an

integer iloop such that i loop>ihalt for all ihalt.

2) From each statement Si, i=l,2,...,k, obtain the statement

S! as follows:1

(The number j associated with a star denotes that in the

original flowchart C the statement following this point

was numbered j.)

S. S!
Si 1 1

START y -h(x)

j y~-
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N~N
pl (xY) pl (x,Y Yy*

y y

4j~2
4z~Y) J .Ycx y)

1!
i halt

iloop

3) The flowchart C', equivalent to the original flowchart C,

is then:
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START

S6

0

Y N

Y Y Y

The equivalence of flowcharts C and C' can be proven by

induction on the length of their computational sequences.
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Lemma 3 Every flowchart program can be translated into an

equivalent 1-recursive program.

Proof Using the method of the previous lemma, it is possible to

translate a flowchart into a one-loop flowchart. Moreover, the

body of this loop does not contain any LOOP statement, and can

therefore be translated into an expression of the form

IF Yc = 1 THEN S'1

ELSE IF yc 2 THEN S'2

ELSE

* IF Yc = k-i THEN S'_l

ELSE S'

which is an s-term. The segment of the program following the

termination condition (yc>k) can be translated as

IF Yc = iloop THEN J- ELSE y

which is a conditional term. Now, the flowchart C' can be

translated into a 1-recursive program by the algorithm of

McCarthy [10] which in fact is not restricted to one loop.

Theorem 2 Let C be an arithmetical flowchart program with

input variables x . Then

the predicate val<C,x> = u is arithmetical.

Proof The arithmetical predicate equivalent to valCC,x> = u

can be constructed in the following way.

1) Translate the flowchart C into flowchart C' containing a
single loop, using the method of Lemma 2

2) Translate the flowchart C' into a 1-recursive program P

using McCarthy's algorithm.

3) Translate the program P into an arithmetical predicate

using the method of Theorem 1.

Let us denote the above predicate by Rp(x,u). This

predicate completely characterizes the computation of P on input
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x. It can be used to prove various properties of P. Examples:
(i) P halts on input x if 3 u%(xu) holds.

(ii) Given an "output predicate" A(x,z), P is partially correct
with respect to A if 3u[R(xu) & A(x,u)] holds.

We point out that in the work of Cooper and Manna (see [91), a

second-order formula is associated with a flowchart and the proofs
of certain properties of programs in their formalization may

require second-order methods. In contrast, Rp(xu) is a first-
order predicate.

3. SYNTHESIS OF INVARIANT ASSERTIONS

To prove the partial correctness of a flowchart program,
one often needs invariant assertions associated with various

points in the program. These are predicates involving the
variables in the program such that whenever the control passes

through the associated point, the predicate at that points holds.

Among the possible assertions at a point in the flowchart pro-
gram, there exists a strongest assertion defined as follows

(see [9]):

Definition 4 A predicate qi(x,y) over D -- the domain of inter-

pretation of a program -- is a minimal predicate of cutpoint i
in the program, if qi(x,y*) is true for every y* from D such that

during the execution of <P,x>, we reach the cutpoint i with y=y*,
and for no other y*" is q(x,y*') true.

Theorem 3 The minimal predicate qi(x,y) of a cutpoint A in an

arithmetic flowchart P is arithmetical.

Proof We give a constructive proof as follows. First, from the
program P we obtain another program PI with the following property:

P' uses a new variable ynew whose value at the cutpoint i equals

the number of times the cutpoint i is passed during the execution
of <P',x>. For any integer n, if during the execution of P, a

HALT or LOOP statement is reached before the cutpoint A is passed,
then val <P',<x,n>> is undefined. Otherwise, val <P',<x,n>> gives

the values of the program variables y when A is reached n times.
Next, we use Theorem 2 to obtain the arithmetical predicate, call
it pi(x,y,n), equivalent to
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val <P',<x,n>> = y. Finally, we show that the required minimal
predicate is 3npi(xy,n).

1) From the program P construct a new program P' as follows:

Let y new, z' be new variables distinct from all variables

in P, the number of new output variables z' being equal to the

number of program variables y in P. Then replace

with

~E " Ynew0

and replace all HALT statements

with

Further, replace the cutpoint i

i

with

Y~.-. . .
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2) Using the method of Theorem 2, derive an arithmetical

predicate P.(x,y,n) equivalent to val<P',<x,n>> = y.

3) It is now needed to show that the predicate 3 i Pi(x,y,n)

is equivalent to qi(x,y).

Part 1: qi(x, *) = 3n Pi (x,X*,n)

If qi(x,y*) is true, then from Definition 4 it follows

that during the execution of <P,x> the cutpoint i was

reached, say n* times, and the value of y was y*. But

then 3n Pi(x,x*,n) is true because there exists an n,
namely n*, such that Pi (x,y*,n*) is true.

Part 2: 3n Pi(x,y*,n) - qi(x,y*)

Assume 3 n Pi(x,y*,n) is true and let n* be the minimum

n such that Pi(x,x*,n) is true. Then qi(xX) is true

because there is a point in the execution of <P,x> when
i is reached and y is equal to y*, namely when we reach

the cutpoint i n*-time.

As indicated by the above theorem, first-order predicates

suffice for expressing invariant assertions for arithmetic pro-
grams, and these assertions can actually be generated mechani-

cally. Also note that the Cooper-Manna second-order formulas

[9] associated with programs contain existential quantifiers
over predicate variables, having a prefix of the form 3Q13Q23Q3...

The appropriate Qi to satisfy such formulas are indeed the minimal
predicates. By substituting explicit solutions obtained above,
we can eliminate the second-order prefixes from Cooper-Manna

formulas. Of course, such a reduction to first-order formulas

is quite involved. It is also unnecessary, since Theorem 1 fur-

nishes equivalent first-order formulas directly.
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Example 3 We will construct the minimal predicate for the cut-

point a in the following flowchart program.

l(yly 2) -(X2 0)

y
y 1 =0 Z4-y 2  HALT

N....................... cutpoint a

(yl'y 2 ) 4- (Yf-lY 2 +Xl)

Applying the transformations described in the proof of the Theorem

3, we obtain the following program:

N Y

Yl=(YlOOP

1

As the next step, we can use the method of Theorem 2 to obtain
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a one-loop flowchart with no LOOP statement in (or attached to)

the loop body. But this method is unnessary for our simple

example. The flowchart already has only one loop, and all we

need is to separate the LOOP statement from the body of the loop.

So using an intuitively correct transformation, we transform the

above flowchart into:

START

(, F (x11 x2,e210,0 )

TH E I 0 0 z T H Z2E (YI'Y2)N N

--4 (yI'y2EYnew) LS (Yl-lY2+xlynew+l)

As the next step, using McCarthy's algorithm, the equivalent
1-recursive program is obtained:

<Z 1,z2 > = F(vlX2 ,x2 ,,)
F(x lX2,ylY2,ynew ) 4 IF (yl=0 V y new-n)

THEN IF yl=0 THEN _L ELSE <yly2>

ELSE (1l,2,yl-ly2+xlynew+l)

The minimal predicate at cutpont a is equivalent to

It

Dn val<C,<x,x2,n #x2,0,0>> = <ylY2>  I

and is given by:
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an3k-31 c23c3 ad3d2 3d 3

[B(cl 1dl1 O)=x2  & B(c2 ,d2 ,0)=o & 8(c3 ,d3 ,0)=O

& Vi[(Xi< k) : [8(c,,dl,i) = 8(c,,d,,i-1)-1

& 8(c2 ,d2 ,i) = 0(c2 ,d21 i-l) + x1

& 8(c3 ,d3 ,i) = (c3 ,d3 ,i) + 1

& " [8(c 1ld,i) = 0 B(c3 ,d3,i) = n]l]

& Yl =(cl,dl,k) & y2 =8(c 2 d2 k) & (Cl,dl,k)p)]

This predicate is the minimal predicate for the cutpoint

a, because it describes all the possible values of the variables

Y and at a, and is true of no other yl and y2 " Using the

axioms of the first-order predicate calculus extended with
Peano axioms, we can simplify this predicate to

Y2 = xl*(x 2 -yI) & O<y 1<x2
which is clearer and shorter description of the relation between
the variables.

4. EQUIVALENCE OF MINIMAL AND OPTIMAL PREDICATES

The problem of defining and discovering inductive asser-

tions has been explored by Cousot and Cousot [3) using the fixed-

point theory of programs. They describe how a system of logical

equations can be associated with a flowchart such that the least

solution of this system of equations constitutes optimal invariant

assertions. Using Tarski's theorem [14], they show that such

assertions always exist. But because of their non-constructive

proof, it is not clear how to obtain the solution by a finite

process. We prove that minimal predicates are the least solution

to the system of equations defining optimal invariant assertions,

thus showing how to synthesize optimal invariant assertions

mechanically.

Following [3], we define the deductive semantics of a
programming language by the rules associating with each statement

of a programming language an equation which has first-order UI
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predicates as indeterminates. The deductive semantics of a

program is defined by the set of these equations.

The basic elements of a flowchart are:

Start statement:

Assignment statement:

Test statement:

Merge statement:

Given a flowchart we assign cutpoints to this flowchart

so that there are only basic elements between cutpoints. Then

we associate a predicate Pi(x,y) with each cutpoint i. Finally

with each basic element we associate one or two equations as

follows:

Start statement: Sy4h(x,

P0 (x,y) - (y-h(x))
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Assignment statement: j fy x I  ; i

Pi(x,y) = 3v(Pj(x,v) & (y=f(xv)))

where P., respectively Piare predicates associated with

cutpoints j, respectively i.

Test statement: j (Xy) i

Pi(xy) = Pk(X,y) & Pj(x,y)

Pk(xy) = ^Pk(Xly) & Pj(x,y)

where PiPjPk are the predicates associated respectively

with cutpoints i,j, and k.

Merge statement: j

P i(xY) = Pj(xy) V Pk(xy)

where Pi,Pj and Pk are predicates associated with cutpoints

i,j, and k.

By applying the rules of deductive semantics to a flowchart,

a system of equations of the following form is obtained:

P0 = (y=h(x))

P1 = Gi(P0"PI".... Pn) (5)

P2 
= G2 (P0 P1

'.... Pn )

P n = G n(P0'PIl....Pn)

In the above Pi (x,y) has been abbreviated to Pi for convenience.

It is possible to prove that the set of first-order pre-
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dicates form a lattice as follows:

as the ordering relation

F as the least element

T as the largest element

v(respectively 3) as join for finite (respectively
infinite) operations.

& (respectively V) as meet for finite (respectively
infinite) operations.

It is also possible to prove that Gi are continuous functions.

It, therefore, follows from Tarski's theorem (14] that the

above system (4) has a least solution Popt"

Theorem 4 Let P be a flowchart program with input variable x.

Let G be the set of the equations obtained by the method of

deductive semantics as described above. Then the minimal

predicates ql(x,y), q2 (xiy)# ,...,qn (x,y) are the least solution

of (4).

Proof

Part 1: q(x,y) = <ql(x,y),q 2 (xy),...,q n(xy)> is a fixed-point

of G.

By case analysis

Let the ith equation of the set G of the equation be:

Case 1: P1 (x,y) - (y=h(x)) (5)

This equation must have been associated with the START

statement. At the cutpoint 1, which follows START and

assignment y4h(x), the only possible value of y is h(x).

Therefore the minimal predicate q1 (x,y), describing all

(and the only) possible values of y at cutpoint 1, is

y=h(x). When we substitute this ql(x,y) in the equation

(5) we obtain

(y-h(x)) = (y=h(x))

Thus the equation is satisfied.

Case 2: Pi(xy) -3vPj(x'v) & y - f(x,v) (6)

This equation must have been associated with the assignment
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statement yef(x,y) which follows cutpoint j. Suppose the
minimal predicate at cutpoint j is q.(x,y). Then, after

the execution of the assignment y4-f(x,y), all (and the

only) possible values of y at cutpoint i are those values

of y equal to f(x,v), where v is a possible value of y at

j. In other words, if qj(x,y) is the minimal predicate at

cutpoint j, the minimal predicate at cutpoint i must be

'v(qj(x,v) & y=f(x,v)).

If we substitute these qi and qj into the equation (6),

we obtain

v(qj(x,y) & y=f(x,v))) = gv(qj (x,v) & y=f(x,v)))

Thus the equation (6) will be satisfied.

Case 3: Pi(x,y) = p(X,y) & P.(x,y) (7)

This equation must have been associated with the test

statement that follows cutpoint j. Suppose all (and the

only) possible values of y at cutpoint j are described by
qj(x,y), then in order to arrive at cutpoint i we had to

pass test Pl (x,y). Thus all (and the only) possible values

at cutpoint i are described by the predicate

qj(x,y) & pl(x,y)

Case 4: Pi(x,y) = Pj(x,y) v (8)

This equation was associated with the merge statement. Let

qi(x,y) and qj(x,y) describe all (and the only) possible

values at cutpoints j and 1. To arrive at cutpoint i we

had to take a path either coming from cutpoint j or from

cutpoint k. Therefore the possible values of variable i at

cutpoint i are either those at cutpoint j or k. In other

words

qi(xy) - qj(x,y) v qk(xY)

The predicates qi,qj and qk satisfy the equation (8).
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Part 2: q(x,y) is the least fixed point of G

The proof is by contradiction. Suppose

~(q (x, y) :: Q (x, y))

where Q(x,y) is a fixed-point of G. It means there must

exist x*,y* and cutpoint i such that qi(x*,y*) is true

and Qi (x*,y*) is false. We recall from Section 2.3 that

if qi(x*,y*) is true, then there exists a statement sequence

Sl,"S2, ..,sk

such that cutpoint i is reached and the value of y at this

point is y*. Let Si , Si2,..., Sik be the statements

executed, and yt be the value of y at the step j. We first

note that

Qil1(x*'Y* 1)MQi2 (x*'Y* 2)OQi 3(x*,Y* 3 ) D..
11 1 12 2 13

This is shown in the following lemma:

Lemma 4 If j>l then

Q. (x*,y* )=Q. (x*,y*)
'j-i j-1 J

Proof: By case analysis.

Case 1: Suppose Sij1 is an assignment statement. Then

Qi (xY) = 9v(Qi - l (xv) & y=f(x,v)). If

Qi (x*,y* ) is false, then Qij- (x*,y* j_) must be

false. But we know that there is a v such that

y* =f(x*,v), specifically v1y* . Thus if
j j-I

Qi (x*,y* ) is false, Qi (x*,y* ) must also be
j j j-l j-l

false.

Case 2: Supose Si is a test statement. Then

Qij (x,y) - Q1 j(xy) & Pk(x~y). To reach cutpoint

ii j-l I lli II
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i, pk(x*,y* ) must have been true so if Qi (x*,y*j J J J

is false, Qi (x*,y* ) must also be false.

Case 3: Suppose Sij is a merge statement. Then1

Qi (x,y) = Qij1 (X,y) v Qij (x,y). Hence, if
j- '-2

Qi (x*,Y* ) is false, then both Qij1 (x*,y* j_) and

Q j(x*,y* ) must be false.Qij-2 3-2

Proof of Theorem 4 (continued)

If we assume that there is a cutpoint ik such that

Qi (x*,Y* ) is false, then from Lemma 4 it follows that Q1 (X*,Y* l )

is also false. (S1 must be the first term of the computational

sequence.) On the other hand we know that qi.(x*,y*) is true

for all j. This follows from the definition of q. But ql(x,y) is

y=h(x) and if Q is a fixed-point of F, then we must have

Q(x,y) = (y=h(x))

So on the one hand

ql(x*,y* ) = (y* = h(x*))
1 1

is true but on the other hand

Ol(x*,y* ) = (y* = h(x*))
1 1

is false so that we have a contradiction. Thus we conclude that

our assumption

-(q(x,y) D Q(x,y)) is false
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5. CONCLUDING REMARKS

This paper has dealt with arithmetical programs in which

the data type consists of nonnegative integers and the operations

are those of recursive arithmetic. We have characterized the

computations of an arithmetical program by an arithmetical pre-

dicate. This is a first-order formalization of programs, compared

to the well-known second-order formalization (e.g. given in 191).
We have also shown that arithmetical predicates are powerful

enough to express invariant assertions, and we have given an

algorithm to generate invariant assertions for arithmetical

programs. This result should be seen in contrast to Misra [121

where it is argued that the "general problem of generating loop

invariants from input specification is impossible." Although it

has not been proven formally, the time complexity of our algorithm

is a polynominal function of program length. Thus arithmetical

programs furnish a clear exception from the implication in

Wegbreit[151 that in the general case the synthesis of invariant

assertion may require exponential time.

Unfortunately, the invariant assertions generated by our

algorithm are quite complex. They do not provide any insight

about the computations done by a program, but essentially re-

express the computations in terms of arithmetical predicates.

Although it is conceivable that these predicates can be simplified

by the rules of logic and formal arithmetic, their usefulness in

applications such as program verification is doubtful. In any

case, our concern in this paper is theoretical -- in showing

the solvability of the assertion synthesis problem for arithmet-

ical programs. We would like to emphasize one serious problem,

however. Invariant assertions have been defined in the literature

purely semantically. For example, minimal predicates (Manna[9])

and optimal predicates (Cousot & Cousot [31) have been defind in

terms of the relations they ought to satisfy. But their intended
"practical usefulness" is not reflected in their definition.

Although the literature abounds with examples of elegant, concise

assertions, there are no clear criteria to specify "nice" asser-
tions. The fact that our synthesized assertions satisfy the

letter of the definition, but not the spirit, underscores the
inadequacy of the definition.
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